
CHRONOS-TRAINER: A RAPID PROTOTYPING FRAMEWORK
FOR REALTIME AUDIO PATTERN RECOGNITION

Bernhard Rettenbacher, Moritz Fišer

JOANNEUM RESEARCH Forschungsgesellschaft mbH (bernhard.rettenbacher@joanneum.at)

Abstract: We present the Chronos-Trainer Framework for developing audio pattern recognition systems with a focus on
both offline prototyping and realtime execution. The framework covers feature extraction, labelling, classifier training,
evaluation and execution. It is implemented as a hybrid Simulink - MATLAB - C++ - Java - Framework which enables
seamless transformation of algorithms from MATLAB- and Simulink-prototypes to highly optimized binary code that can
be integrated into online (realtime) and offline applications.

Keywords: audio feature extraction, pattern recognition, annotation, realtime, MPEG-7, MATLAB, Simulink

1. INTRODUCTION

For rapid prototyping of audio pattern recognition algorithms
MATLAB provides a convenient and efficient environment.
Many signal processing and pattern recognition toolboxes
are available and the rich scripting and visualisation environ-
ment makes it easy to interact with the analysis data.

In many signal processing and pattern recognition applica-
tions multiple algorithms have to be chained together. This
creates a demand for frameworks that provide the “glue
code” enabling data flow between the algorithms. In Speech
Processing and Music Information Retrieval communities
frameworks have been developed either directly in MATLAB
or in other programming languages, mainly C++. MATLAB
toolboxes are generally easy to use and to modify while
C++ frameworks promise a more computationally efficient
execution.

A popular MATLAB toolbox from the Music Information
Retrieval (MIR) community is MIRtoolbox[1], which pro-
vides a wide range of feature extraction algorithms and in-
cludes additional toolboxes: the AuditoryToolbox[2] pro-
vides auditory features, NetlabToolbox[3] provides classi-
fiers and SOMToolbox[4] is used for Self-Organizing-Maps.
Major disadvantages of these MATLAB toolboxes are poor
processing speed and difficulties when integrating toolbox
functionality into a standalone application. A common so-
lution is to reimplement the algorithm prototypes in a more
efficient programming language like C++. This task often
takes a significant amount of time and requires verfication

of the ported algorithms to prove the equality of implemen-
tations.

For further development and especially for evaluation tasks
it is advantageous to reintegrate these ported algorithms into
MATLAB. Therefore additional effort has to be taken to
create interfaces using MATLAB APIs or by file exchange.
The practical need for this kind of integration can be seen
when looking at actual Frameworks from the Music Informa-
tion Retrieval and Speech Processing communities. Many of
theses frameworks provide interfaces to scripting languages
or other interactive environments.

MARSYAS[5] is implemented in C++ and uses the MAT-
LAB Engine to make calls to the MATLAB environment.
It can be also integrated with MAX/MSP1 as a so called
“external” or by using one of the SWIG2 bindings for more
than 20 programming languages. For data exchange with the
WEKA[6] data mining software it supports the ARFF textual
file format. openSMILE[7], a C++ framework focusing on
feature extraction also supports the ARFF file format and
in addition the file formats for the Hidden Markov Toolkit
(HTK)[8], a speech recognition toolkit and LIBSVM[9], a
Support Vector Machine library. Essentia[10], also written
in C++ provides a Python binding and can be wrapped in a
SonicVisualiser[11] VAMP Pugin for visualisation.

The availability and performance of easy-to-use native C++
frameworks highly support the reuse of existing algorithms

1http://cycling74.com
2http://www.swig.org

6th Congress of Alps-Adria
Acoustics Assosiation
16.-17. October 2014
Graz, Austria
ISBN: 978-3-200-03921-6

but that they appear to limit the motivation for development
of new feature algorithms. This originates in the fact that
people working on audio pattern recognition problems often
are signal processing experts but have limited experience
in advanced programming techniques like object oriented
programming. To overcome this constraints we present a
code-generation approach to feature development which is
part of our internal framework called Chronos Trainer.

Chronos trainer is a hybrid Simulink - MATLAB - C++ -
Java - Framework that almost eliminates the need for port-
ing algorithms to a different programming language. Al-
gorithms may be prototyped in MATLAB or Simulink and
transformed automatically into highly optimized native bi-
nary code. The framework tightly integrates with an MPEG-
7 Database for storing semantic annotations and a pattern
recognition toolbox that enables classifier training within
MATLAB and classifier execution within the binary code.
To integrate with other frameworks, a wide range of file and
API interfaces is provided.

2. OVERVIEW

Chronos-Trainer is a software framework supporting the
development of audio pattern recognition systems. It covers
all phases of development including audio data management,
annotation, feature extraction, classifier training, evaluation
and execution. The framework consists of

• a MATLAB Toolbox for interactively accessing audio
data, annotating audio segments, extracting features,
and training classifiers

• an MPEG-7 Database with MATLAB and Java APIs
to manage audio file metadata and temporal semantic
annotations

• a Simulink Blockset containing blocks for feature al-
gorithms, classifier execution, signal managment, file-
and network-IO

• a Simulink Code Generation Target for generating
shared libraries

Chronos-Trainer uses additional tools and Toolboxes to com-
plete its functionality. For classifier training and execution
the perClass3 library is used. This library consists of a MAT-
LAB Toolbox for classifier training and a C-API for directly
executing trained classifiers. For temporal annotation inter-
faces to WaveSurfer[12], SonicVisualiser[11] and Audacity4

are available.

3http://perclass.com
4http://audacity.sourceforge.net

3. AUDIO DATA MANAGEMENT

In Chronos-Trainer, all audio data is managed by an
MPEG-7 Database. Every audio file is accompanied with
an MPEG-7 XML document that contains at least an ID and
an URI to the audio file. The ID is used for referencing
the audio file and its associated metadata throughout the
framework. All operations on the MPEG-7 document as
well as retrieving audio data can be made using an object
oriented MATLAB interface. The interface also +provides
methods for calling anotation tools directly. The interface
transparently manages annotation file format conversion for
the external tools so the user never needs to perform any
manual export/import operations. When editing with the
external tool is finished a database update with the changed
annotations is triggered.

4. Annotation

We decided on MPEG-7 as the central metadata storage
format because it combines technical metadata with docu-
ment level descriptive metadata and content based temporal
descriptions needed for audio annotation. In [13] we investi-
gated whether MPEG-7 is usable for audio pattern recogni-
tion tasks in general with a focus on technical metadata like
recording conditions and signal error description.

MPEG-7 is well suited for temporal descriptions. An au-
dio file can be described as a sequence of AudioSegments
grouped in TemporalDecompositions. Each AudioSegment
may contain structured descriptions using free text, key-
words, structured annotation or semantic descriptors. We
decided to use the more complex semantic descriptors to
formalize segment annotation and make the annotation ac-
cessible to semantic tools like semantic reasoners.

AudioSegments are identified by a segment id. They contain
a sample-based time code for starting time and duration. The
segments may not have any temporal overlap but may be
distributed over different TemporalDecompositions. This
structure maps to the segment layout of multitrack audio
editors like Audacity and speech transcription tools like
Wavesurfer.

To make the semantic description more human readable, eas-
ier to write and to make use of audio annotation tools from
the Speech Processing domain we created a domain spe-
cific language named “AnnotationLine” that directly maps
to MPEG-7 semantic descriptors. The language provides
a syntax for key- value pairs representing semantic entities
described by a label, its semantic type and a list of properties.

Here is an example of a MPEG-7 semantic description inside
an AudioSegment which describes “a large black dog barking
agressively”:

<Semantic>
<SemanticBase xsi:type="ObjectType">

<Label>
<Name>dog</Name>

</Label>
<Property>

<Name>large</Name>
</Property>
<Property>

<Name>black</Name>
</Property>

</SemanticBase>
<SemanticBase xsi:type="EventType">

<Label>
<Name>bark</Name>

</Label>
<Property>

<Name>agressive</Name>
</Property>

</SemanticBase>
</Semantic>

The equivalent AnnotationLine would look like that:

obj = dog[large, black]; ev = bark[agressive]

5. FEATURE EXTRACTION

For audio feature extraction the FeatureProcessor class trans-
parently manages feature processing and storage. Feature
implementations reside in a ProcessingStage. The features
have to be implemented in a Simulink model which can be
loaded into the ProcessingStage. Simulink provides many
potential feature algorithms as part of the Signal Process-
ing and DSP System Toolboxes. Chronos-Trainer also pro-
vides a toolbox containing popular features like MFCC, Zero
Crossing Rate, Spectral Flux, etc. With Simulink Coder5,
the Simulink model can be transformed to C Code and sub-
sequently to an executable. We created a custom Simulink
Coder Target to enable the creation of executable libraries
for all operating systems supported by MATLAB. Other im-
plementations or even external processors and frameworks
are supported by inheritance.

A ProcessingStage contains a signal processing stub with
one input port and one output port. This signal process-
ing stub can compute one or more features. A Simulink
implementation of MFCCs, Zero Crossing Rate and Spec-
tral Centroid is show in Figure 1. The model has a special
interface block called ProcessingStageInterface managing
additional parameters needed for using the model within a
ProcessingStage.

For processing features this stub is automatically connected
with a file source and a file sink. Depending on the number of
input channels the model is also reconfigured. This process
is hidden from the user and only takes place at processing

5http://www.mathworks.com/products/simulink-coder/

Figure 1: Simulink model for a ProcessingStage calculating
MFCCs, Zero Crossing Rate and Spectral Centroid

time. The file sink writes feature files which are stored in a
feature repository maintained by the FeatureProcessor.

Feature processing is triggered either explicit by calling the
process method or implicit by calling a read method. Fea-
tures are processed lazily which means that features are
processed only when a feature file does not exist in the repos-
itory or the feature algorithms have changed. Algorithmic
changes can be detected by the Simulink model versioning
mechanism. The model version is written into the feature file
and used for change detection. This mechanism ensures that
the feature files are always consistent with the algorithms
and only minimum computing power (and execution time)
is needed.

ProcessingStages can also be stacked to form a processing
pipeline. When the features of a stacked stage have to be pro-
cessed the FeatureProcessor manages automatic processing
for all parent ProcessingStages. Attached stages inherit fea-
ture name prefixes from their predecessors and can compute
new features either by extension or by combination.

Extension means that every new feature is calulated for each
input feature. Figure 2 shows an example for using exten-
sion. When appended to the example stage from Figure 1
which calculates the features named “ZeroCrossingRate”,
“SpectralCentroid”, “MFCC1”, “MFCC2” and “MFCC3”
the calculated features in the second stage are named
“Mean_ZeroCrossingRate”, “Std_ZeroCrossingRate”,
“Mean_SpectralCentroid”, “Std_SpectralCentroid” and so
on.

Combination uses all or a selection of input features to calcu-
late a new feature. The second mode becomes handy when a
classifier is used as a feature. A classifier needs a feature vec-
tor as an input and the output is e.g. one feature representing
a class index.

For online processing the Simulink model either has to be
embedded into a wrapper model containing the necessary IO
(e.g. sound card input or network input) or Simulink Coder
has to be used to generate C++ Code or an executable library

Figure 2: Simulink model for a ProcessingStage calculat-
ing Mean and Standard Deviation for each input feature
(extension)

(e.g. a DLL). The ProcessingStageInterface block contains
C++ interface blocks that are added to the generated code
(using the Target Language Compiler). Through the API
exposed by those interface blocks, a C++ application can
exchange data with the model.

For offline processing features are always stored in feature
files. Also when stacking ProcessingStages, processed fea-
tures from one stage are stored in a file and the next stage
reads this file to process its features. This approach allows
access to intermediate results, allows sharing features be-
tween child stages and avoids unnecessary computation.

The features are stored using the HDF56 hierarchical data for-
mat. This file format has several advantages over proprietary
binary or text based formats. An API for several program-
ming languages including C/C++, Java, Fortran, MATLAB,
Python and R is freely available. HDF5 is hierarchically or-
ganized in groups and can contain multidimensional datasets
of arbitrary size. The data is stored binary providing differ-
ent datatypes. Datasets and groups can be annotated with
attributes. We store feature data structured by feature and au-
dio channel. In addition to the features we store a timestamp
dataset and creation information like sample rate, frame size,
model version etc.

6. CLASSIFIER TRAINING

To train and evaluate classifiers, feature datasets of labelled
data are needed. To obtain labels directly from the semantic
annotations we created a rule-based mechanism. These rules
are defined using the XPath query language. For example,
if we want to train a dog barking detector a query for the
barking label could look like this:

SemanticBase[@xsi:type="EventType"]/Label/Name
="bark"

6http://www.hdfgroup.org/HDF5/

To simplify queries a few XPath variables exist for com-
mon query terms. E.g. the variable $ev is a shortcut for
SemanticBase[@xsi:type="EventType"]/Label/Name. This
simplifies the above query to:

$ev="bark"

This labelling mechanism is integrated in the FeatureReader
class which can read feature datasets supplemented by asso-
ciated metadata like semantic annotations, frame count or
timestamps from the MPEG-7 Database.

For classifier training we mainly use perClass Toolbox. This
MATLAB toolbox provides a wide range of classifiers and
supports the complete classifier design lifecycle including
training, operating point optimization and classifier execu-
tion. Trained classifiers can be exported and embedded in
C/C++ code. The library is focused on practical application
of pattern recognition tools which makes it well suited for
real-world applications.

7. APPLICATIONS

The Chronos-Trainer framework follows a generic approach
to audio pattern recognition. It has been used mainly for
the detection of environmental sounds and machine sounds
but also for speech/music detection and vibration analy-
sis. We use Chronos-Trainer for classifier development of
AKUT[14], an acoustic monitoring system for road tunnels
which started as a research project more than ten years ago
and now will be enrolled in multiple tunnels in Austria over
the next years.

In the future we are planning to integrate other frameworks.
A first step in this direction has been made by creating an
“external” ProcessingStage which does not do processing by
itself but is able to read from processed ARFF-Files residing
in the feature repository. This makes it possible to easily
integrate Frameworks like openSMILE or MARSYAS.

8. CONCLUSION

Chronos-Trainer has been developed over the last eight years
with a main focus on applied research and industrial appli-
cations. The main issue that had to be solved was the fact
that most customers require practically working solutions. It
is not sufficient to proof that a classifier can reach a certain
accuracy, false alarm rate etc. on a given dataset. More-
over complete classification systems able to work online in
real-world conditions have to be developed. For achieving
this goal an iterative approach is necessary that touches all
development stages from annotation to online execution. It
is necessary that the framework focuses on minimizes the
required effort to go through this cyclic workflow.

Compared to all frameworks that were referenced in this
article, Chronos-Trainer delivers a more complete frame-

work because it addresses the whole classifier development
workflow. Especially the semantic annotation and rule-based
label-mapping approach exceeds the scope of other frame-
works. We believe that with this approach it is easier to
use the same tools within different domains. Furthermore
it avoids the need for a compromise when having to decide
between a computationally efficient framework and an exper-
imental prototyping framework by using a code generation
approach.

For Chronos-Trainer we also tried to make it easy to in-
clude other feature frameworks. Chronos-Trainer provides
workflow management and a single interface to the external
framework by inheriting a ProcessingStage. External annota-
tion tools and external pattern recognition tools like WEKA
can be easily integrated by either file exchange or API calls.

Development on Chronos-Trainer is still ongoing and its
functionality grows with every project where it is applied.
In the future we want to put more effort in interfacing with
other frameworks and we are looking for ways to share parts
of the framework with the scientific community.

REFERENCES

[1] O. Lartillot and P. Toiviainen, “A Matlab toolbox for
musical feature extraction from audio,” in Proc. of the
10th Int. Conference on Digital Audio Effects (DAFx-
07), 2007, pp. 1–8.

[2] M. Slaney, “Auditory Toolbox,” Interval Research Cor-
poration, Tech. Rep., 1998.

[3] I. Nabney, NETLAB: algorithms for pattern recogni-
tion. Springer, 2002.

[4] J. Vesanto and J. Himberg, “Self-Organizing Map in
Matlab: the SOM Toolbox,” in Proc. of the Matlab
DSP Conference, 1999.

[5] G. Tzanetakis and P. Cook, “MARSYAS: a framework
for audio analysis,” Organised Sound, vol. 4, no. 3, pp.
169–175, Dec. 2000.

[6] I. H. Witten and E. Frank, Data Mining: Practical
machine learning tools and techniques, 2005.

[7] F. Eyben, “openSMILE - The Munich Versatile and
Fast Open-Source Audio Feature Extractor Categories
and Subject Descriptors,” in Proc. of the international
conference on Multimedia, 2010, pp. 1459–1462.

[8] S. Young, G. Evermann, M. Gales, and T. Hain, The
HTK book (for HTK version 3.4). Cambridge Univer-
sity Engineering Department, 2006, no. July 2000.

[9] C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for
Support Vector Machines,” ACM Transactions on In-

telligent Systems and Technology, vol. 2, pp. 27:1—-
27:27, 2011.

[10] D. Bogdanov, N. Wack, E. Gómez, and S. Gulati, “Es-
sentia: An Audio Analysis Library for Music Informa-
tion Retrieval.” in Proc. of ISMIR, 2013, pp. 2–7.

[11] C. Cannam, C. Landone, and M. Sandler, “Sonic Vi-
sualiser : An Open Source Application for Viewing
, Analysing , and Annotating Music Audio Files,” in
Proc. of the international conference on Multimedia,
2010, pp. 1467—-1468.

[12] K. r. Sjölander and J. Beskow, “Wavesurfer-
an open source speech tool.” in Proc.
of INTERSPEECH, 2000. [Online]. Available:
http://www.speech.kth.se/wavesurfer

[13] B. Rettenbacher, W. Bailer, and P. Schallauer, “Ein-
satz von MPEG-7 fur die Entwicklung von akustischen
Klassifikationssystemen,” in Forschritte der Akustik -
DAGA 2006, 2006, pp. 2–3.

[14] F. Graf, G. Rattei, and G. Ruhdorfer, “Giving tunnels
ears - installation of the first acoustic monitoring sys-
tem for road tunnels worldwide,” in Internationaler
Tunnelkongress, Hamburg, 2011.

